EVALUATION OF ESTROGENIC PATHWAY GENES IN THE VAGINA OF RATS TREATED WITH GENISTEIN OR ESTROGEN IMMEDIATELY OR LATER AFTER CASTRATION


Objective: To evaluate the activity of genes ESR1, ESR2, Bcl2, and VEGF MKi67 in the vagina of rats treated with 17ß-estradiol (5?g/Kg) or genistein (50mg/Kg) after castration. Methods: We used 60 adult rats castrated divided into six groups GI = received vehicle (propylene glycol); immediately after castration; GII = received genistein immediately after castration; GIII = received genistein 30 days after castration; GIV = received only the vehicle after 30 days of castration; GV = received 17ß-estradiol immediately after castration; GVI = received 17ß-estradiol after 30 days of castration. Drugs were administered by gavage (0.5 ml) for 30 consecutive days, and after the last administration, the animals were anesthetized and the vaginas were removed. A part of this was dipped in liquid nitrogen for gene expression analysis by RT-PCR method, and the other part was fixed in 10% formalin for histological processing. Sections were stained by hematoxylin and eosin or subjected to immunohistochemistry for evaluation of VEGF-A (vascular growth factor) and Ki-67 (cell proliferation). The analysis of gene expression by quantitative PCR were performed on a custom plate to the signaling pathway of estrogen. Results: The gene expression of ESR1, ESR2, Bad, Bcl2, and VEGF MKi-67 was higher in the groups treated with 17ß-estradiol and GIII showed the highest expression of Bcl2 gene. The thickness of the vaginal epithelium, irrigation (VEGF-A) and cell proliferation (Ki-67) were higher for the GIV and GV, and the data were similar to those found in the analysis of gene expression. Regarding the antiapoptotic process (Bcl2) we observed higher reactivity in GIII, GIV and GV. The gene expression of ESR1 receptor (alpha) and ESR2 (beta) was higher in GIV and GV, whereas the largest increase was observed in the of beta type. Conclusion: Our data showed that genistein has positive effects on the vagina of rats, but this action is less than estrogen.